Numerical investigation of mixing efficiency in Janus micro-mixer using lattice Boltzmann method
نویسندگان
چکیده
Droplet micro-mixing is a critical aspect limiting the accuracy of chemical analysis and quality drug screening, requiring efficient mixing target concentrations in limited volume. In this paper, ternary dilute solute lattice Boltzmann model used to study processes mechanisms solutes inside Janus droplets. The influence three factors including droplet velocity, tilt angle volume ratio on efficiency examined. results show that there main circulation “dead zone” droplet. With increasing both intensity occupied increase, which make increase. At different angles, difference strength internal flow field makes “windward part” greater than “leeward part.” When keeping r-phase constant g-phase, diffusion distance shortened reduced. competes with reinforcing effect field, finally shows tendency larger r: g, faster mix complete. will provide theoretical support for further improvement micro-mixer efficiency.
منابع مشابه
Numerical Investigation of Fluid Mixing in a Micro-Channel Mixer with Two Rotating Stirrers by Using the Incompressible SPH Method
Fluid mixing is a crucial and challenging process for microfluidic systems, which are widely used in biochemical processes. Because of their fast performance, active micromixers that use stirrer blades are considered for biological applications. In the present study, by using a robust and convenient Incompressible Smoothed Particle Hydrodynamics (ISPH) method, miscible mix...
متن کاملHydrodynamic investigation of multiple rising bubbles using lattice Boltzmann method
Hydrodynamics of multiple rising bubbles as a fundamental two-phase phenomenon is studied numerically by lattice Boltzmann method and using Lee two-phase model. Lee model based on Cahn-Hilliard diffuse interface approach uses potential form of intermolecular forces and isotropic finite difference discretization. This approach is able to avoid parasitic currents and leads to a stable procedure t...
متن کاملSimulation of Micro-Channel and Micro-Orifice Flow Using Lattice Boltzmann Method with Langmuir Slip Model
Because of its kinetic nature and computational advantages, the Lattice Boltzmann method (LBM) has been well accepted as a useful tool to simulate micro-scale flows. The slip boundary model plays a crucial role in the accuracy of solutions for micro-channel flow simulations. The most used slip boundary condition is the Maxwell slip model. The results of Maxwell slip model are affected by the ac...
متن کاملnumerical simulation of fluid flow in random granular porous media using lattice boltzmann method
in this paper, fluid flow between two parallel flat plates that are partially filled with two-dimension porous media is investigated numerically using single relaxation time (srt) lattice boltzmann method (lbm) at pore scale. the considered obstacles are random, circular, rigid and granular with uniform diameters. single component and single-phase viscous newtonian fluid are considered as worki...
متن کاملNumerical Study of Bubble Separation and Motion Using Lattice Boltzmann Method
In present paper acombination of three-dimensional isothermal and two-dimensional non-isothermal Lattice Boltzmann Method have been used to simulate the motion of bubble and effect of wetting properties of the surface on bubble separation. By combining these models, three-dimensional model has been used in two-dimension for decreasing the computational cost. Firstly, it has been ensured that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics of Fluids
سال: 2023
ISSN: ['1527-2435', '1089-7666', '1070-6631']
DOI: https://doi.org/10.1063/5.0154943